Translate

jueves, 1 de noviembre de 2012

HISTORIA DEL CALCULO DIFERENCIAL













En agosto de 1675 Gottfried Wihelm Leibniz    empieza a trabajar sobre el desarrollo de su versión del Cálculo. l 21 de noviembre de 1675 escribió un manuscrito usando por primera vez la anotación f(x).dx con el signo integral  y da la regla de la diferenciación de un producto. En el otoño de 1676 descubre el diferencial.

De la potencia: d(xn) = nx-1dx , para n entero y fraccionario. Las publicaciones de Leibniz eran sumamente sucintas y crípticas y el primero en comprenderlas fue Jacob Bernoulli. Jacob, le enseñó a su hermano Juan algunos secretos del Cálculo. Hacia 1690, Newton, Leibniz y los dos hermanos Bernoulli, eran las únicas personas capaces de manejar el Cálculo diferencial e integral. Descartes y Leibmz descubrieron en forma independiente el cálculo diferencial. Newton descubrió el cálculo integral, y luego describió la relación recíproca entre los cálculos diferencial e integral. Sus descubrimientos ocurrieron en Woolsthorpe, aproximadamente en 1665, debido a que Cambridge estaba cerrada como resultado de una epidemia.
En 1696, Guillermo Francisco Antonio de L'Hôpital (1661-1704) escribió el primer libro de cálculo diferencial. Gran parte del contenido de este libro, incluyendo el método conocido como "regla de L'Hôpital", se basó en el trabajo anterior de Juan Bernoulli
En 1712, Brook Taylor fue nombrado miembro de la Royal Society de Londres ( de la que fue secretario ) y del comité que dirimió las diferencias entre Newton y Leibniz sobre la prioridad en el descubrimiento del cálculo diferencial.

El Cálculo Diferencial consiste en el estudio del cambio de las variables dependientes cuando cambian las variables independientes de las funciones. El principal objeto de estudio en el cálculo diferencial es la derivada. En una gran cantidad de procesos donde se relacionan dos o más variables, frecuentemente el cambio en una de ellas induce un cambio en el valor de las otras. Para poder comprender y manejar tales procesos, la derivada se ha convertido en herramienta fundamental, puesto que permite tanto determinar cómo predecir el comportamiento de las diversas variables involucradas en un fenómeno. 

Los conceptos de velocidad y la aceleración son aplicaciones de la derivada como razón de cambio. 
En economía los costos marginales, los ingresos marginales y las utilidades marginales también son derivadas. Una aplicación interesante de la derivada se encuentra en los problemas de optimización. Por ejemplo, cuando una compañía que elabora bebidas desea reducir costos produciendo una lata que contenga el máximo volumen y requiera el mínimo de material, la solución puede encontrarse mediante el empleo del cálculo diferencial. Es por ello que tendrás la oportunidad de revisar algunos problemas relacionados con la optimización y aplicar los conocimientos en la resolución de algunos problemas sencillos.

martes, 30 de octubre de 2012

INTERVALOS


En análisis, se denomina intervalo a la máxima división sectorial sumisa es decir a el subconjunto de la doble implicación latente en matemáticas subconjunto conexo de la recta real. Más precisamente, son las únicas partes I de R que verifican la siguiente propiedad:

si x e y pertenecen a I, x ≤ y, entonces para todo z tal que x ≤ z ≤ y, z
pertenece a I.
Es un conjunto de números que se corresponden con los puntos de una recta o segmento, en el que se encuentra un ordenamiento interno entre ellos. Los intervalos es el espacio que se da de un punto a otro en el cual se toman en cuenta todos lo puntos intermedios. Por ejemplo: en una recta tenemos un intervalo:[-2,2]entre este espacio se encuentran los números (-2-1,0,1,2) aquí se encuentra un intervalo.....ya que el espacio abarca una serie de números consecutivos que se corresponden entre sí.


También existe una regla ERRÓNEA para el uso del paréntesis: si se dibuja sobre la recta real dos intervalos adyacentes, como (0; 1) y (1; 2) (es decir, se pinta la recta real y se coloca cuatro paréntesis donde corresponda), entre los dos intervalos cabe un signo 1 (o lo que corresponda según los intervalos) cabe, apretado pero cabe. Mientras que si los dos intervalos son (0, 1] y [1, 2), o (0, 1] y [1, 2) el número no cabe, o cabe muy estrangulado. O sea, que si los dos intervalos son abiertos, el número 1 no pertenece a ninguno, y por tanto hay espacio para meterlo en medio.

 Clasificación

Se pueden clasificar los intervalos según sus características topológicas (intervalos abiertos, cerrados y semi abiertos) o según sus características métricas (su longitud: nula, finita no nula, o infinita).







LIMITES




En matemática, el límite es un concepto que describe la tendencia de una sucesión o una función, a medida que los parámetros de esa sucesión o función se acercan a determinado valor. El límite de una función es un concepto fundamental del cálculo diferencial matemático.

Informalmente, el hecho que una función f tiene un límite L en el punto p, significa que el valor de f puede ser tan cercano a L como se desee, tomando puntos suficientemente cercanos a p, pero distintos de p.

En análisis real para funciones de una variable, se puede hacer una definición de límite similar a la de límite de una sucesión, en la cual, los valores que toma la función dentro de un intervalo se van aproximando a un punto fijado c, independientemente de que éste pertenezca al dominio de la función. Esto se puede generalizar aún más a funciones de varias variables o funciones en distintos espacios métricos.
Informalmente, se dice que el límite de la función f(x) es L cuando x tiende a c, y se escribe:
 \lim_{x\to c} \, \, f(x) = L
si se puede encontrar para cada ocasión un x suficientemente cerca de c tal que el valor de f(x) sea tan próximo a L como se desee.
Para un mayor rigor matemático se utiliza la definición épsilon-delta de límite, que es más estricta y convierte al límite en una gran herramienta del análisis real. Su definición es la siguiente:

"El límite de f(x) cuando x tiende a c es igual a L si y sólo si para todo número real ε mayor que cero existe un número real δmayor que cero tal que si la distancia entre x y c es menor que δ, entonces la distancia entre la imagen de x y L es menor que εunidades".

Esta definición, se puede escribir utilizando términos lógico-matemáticos y de manera compacta:



   \begin{array}{l}
      \underset {x\to c}{\lim} \, \, f(x) = L \iff  \forall \varepsilon > 0 \ \ \exists \ \delta > 0 : 0<|x-c|<\delta \longrightarrow |f(x)-L|<\varepsilon
   \end{array}


Si f(x) y g(x) son funciones de variable real y k es un escalar, entonces, se cumplen las siguientes propiedades o reglas: 






sábado, 27 de octubre de 2012

DERIVADAS




 

El estudio de uno de los conceptos fundamentales del cálculo diferencial: la derivada de una función.
En matemáticas, la derivada de una función es uno de los dos conceptos centrales del cálculo. 

La derivada de una función en un punto “a” surge del problema de calcular la tangente a la gráfica de la función en el punto de abscisa “a”, y fue Fermat el primero que aportó la primera idea al tratar de buscar los máximos y mínimos de algunas funciones. En dichos puntos las tangentes han de ser paralelas al eje de abscisas, por lo que el ángulo que forman con éste es de cero grados. En estas condiciones, Fermat buscaba aquellos puntos en los que las tangentes fueran horizontales
La derivada de una función en un punto mide, por tanto, la pendiente de la tangente a función en dicho punto. Nos va a servir para estudiar el crecimiento o decrecimiento de una función o la concavidad o convexidad de la misma en los diferentes intervalos en los que se puede descomponer su campo de existencia.
Es importante tener en cuenta que hay funciones que no tienen derivadas en un punto, y que para que una función tenga derivada, la función debe ser continua pero no todas las funciones continuas son derivables en todos sus puntos.

Derivada de una función en un punto. Dada la función f(x) continúa en el intervalo abierto I, se define la derivada en el punto “a” como:


   

En el siguiente vídeo encontraremos un tutorial de como desarrollar tres ejercicios diferentes de derivadas con suma y resta 




En la siguiente tabla encontraremos las reglas de derivacion que son los metodos que se emplean para el calculo de le derivada de una funcion. dependiendo el tipo de funcion se utiliza un metodo u otro.